Beyond Linearity, Stability, and Equilibrium:
The edm Package for Empirical Dynamic
Modeling and Convergent Cross Mapping in
Stata

Jinjing Li
NATSEM, University of Canberra
Michael J. Zyphur
Business & Economics, University of Melbourne
George Sugihara
Scripps Institution of Oceanography, UCSD
Patrick J. Laub
Business & Economics, University of Melbourne

Abstract. How can social and health researchers study complex dynamical
systems that function in nonlinear and even chaotic ways? Common methods
such as experiments and equation-based models may be ill-suited to this task.
To address the limitations of existing methods and offer nonparametric tools for
characterizing and testing causality in nonlinear dynamical systems, we introduce
the edm command in Stata. This command implements three key empirical dynamic
modelling (EDM) methods for time-series and panel data: 1) simplex projection,
which characterizes the dimensionality of a system and the degree to which it
appears to function deterministically; 2) S-maps, which quantify the degree of
nonlinearity in a system; and 3) convergent cross mapping (CCM), which offers a
nonparametric approach to modeling causal effects. We illustrate these methods
using simulated data and for daily Chicago temperature and crime, showing an
effect of temperature on crime but not the reverse. We conclude by discussing how
EDM allows checking the assumptions of traditional model-based methods such
as residual autocorrelation tests, and we advocate for EDM as it does not assume
linearity, stability, or equilibrium.
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1 Introduction

How can researchers study complex dynamical systems that may not fulfill the as-
sumptions of classic methods such as experiments or model-based regressions? Causal
identification is a difficult task in many contexts, including when studying complex
dynamical systems wherein experiments or model-based regressions may not be available
or appropriate. Dealing with the complexity of real-world phenomena requires tools that
can characterize and test causality in nonlinear dynamical systems.

One promising method is called empirical dynamic modeling or EDM (for an intro-
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duction see Chang et al. 2017). This novel approach from the natural sciences allows
1) characterizing a dynamical system including its complexity, predictability, and non-
linearity as well as 2) distinguishing causation from mere correlation, while 3) making
minimal assumptions about nonlinearity, stability, and equilibrium (see Sugihara and
May 1990; Sugihara 1994; Sugihara et al. 2012).

To complement more classic approaches including experiments or model-based re-
gressions, in what follows we offer an overview of the conceptual logic of EDM and then
describe the new Stata program edm, which allows researchers to study the nonlinear
dynamical systems that may underlie observed time-series and panel data—consistent
with approaches available in the R packages TEDM and multispatial CCM (see Clark
2015; Ye et al. 2016, from which we have borrowed with permission Figures 1 and 2). We
conclude by noting how these tools may be useful for checking assumptions that underlie
other approaches to time-series and panel data modeling, including by examining their
residuals for nonlinear autocorrelation with EDM methods. We also offer appendices
and online resources to replicate our analyses and graphs.

As EDM may be new and is perhaps best explained visually, Sugihara et al. (2012)
offer three 1-2 minute introductory videos, ordered: 1) https://youtu.be/fevurdpiRYg,
2) https://youtu.be/QQwtrWBwxQg, and 3) https://youtu.be/NrFdIz-D2yM.

2 Method

The logic of EDM is based on the fact that a dynamical system producing observed time-
series or panel data can be modeled by reconstructing the states of the underlying system
as it evolves over time (Takens 1981). Consider a system that is characterized by D
variables over time, such as a national economy that changes along GDP, unemployment,
and inflation, or a person characterized by evolving health and well-being states. Over
time, the D variables chart a trajectory of system states as they change, as in Figure 1
for D = 3 (showing the Lorenz or ‘butterfly’ attractor and a measure of it as ). As the
national economies or individuals evolve, the trajectories of the D variables will trace a
D-dimensional ‘manifold” M in a D-dimensional state space over time. The manifold
M represents the system’s trajectory on all D variables as they change over time, so
that at any time ¢ the system’s state is a single point on M that reflects the D system
variables. If the variables are deterministically related (i.e., if they cause each other), M
will reflect a set of typically unknown differential equations that generate an ‘attractor’
along which the points on M tend to fall. Of course, the attractor may be chaotic rather
than a fixed point (equilibrium) or set of points (equilibria) to which system states tend
to converge. The term ‘dynamical’ refers to systems that function in this fashion.

If the underlying equations of the attractor manifold M are known, it is elementary
to: characterize the complexity and nonlinearity of the system; describe its deterministic
and stochastic features; and identify causal effects among the D variables. However, in
practice M is unknown and all D variables are not measured. Therefore, M must be
reconstructed with an observed variable X from time-series (single entity N = 1) or
panel data (multiple entities N > 1) with sufficient time length. If X is a projection (i.e.,
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Figure 1: An example of a dynamic system and its corresponding manifold.

measure) of M as in Figure 1, Takens’s theorem proves that the deterministic behavior
of the entire system can often be reconstructed using merely the lags of X to form an
E-dimensional shadow manifold M x (where D < E < 2D + 1; see Takens 1981; Sauer
et al. 1991)—this logic also applies to the multivariate case, such as if a stochastic input
is also needed to reconstruct a system (Deyle and Sugihara 2011). Figure 2 illustrates
this reconstruction process using E = 3 lags of X from Figure 1. As Figure 2 illustrates,
a set of E-length vectors formed by E lags of X are used to reconstruct the original
manifold as the shadow manifold M x (i.e., vectors of data on X at each ¢, ¢t — 7, ...
t — (F — 1)7, where the ‘time delay’ parameter 7 > 0).

)

Notably, this can also be done using panel data, and in our Stata implementation
this case is by default treated using the ‘multispatial’ method of Clark et al. (2015),
wherein E-length vectors of lags on X are taken for each panel separately (so any
given point on M x does not mix data/lags drawn from different panels). Then, all of
the E-length vectors are pooled in analyses, which makes the assumption that all of
the panels share the same underlying dynamic system while each panel’s longitudinal
trajectory contributes to the reconstruction of different sections of the manifold.

Using lags to reconstruct a manifold is a ‘delay embedding’ or ‘lagged coordinate
embedding’ approach to state space reconstruction, wherein E-length vectors of lags
on X define points on M x, and the quality of the reconstruction is evaluated by the
correlation p between out-of-sample observed and predicted values—the hallmark of
deterministic systems is prediction. The measure p reflects the extent to which the
underlying system can be recovered by a deterministic manifold reconstructed as M x.
If the original D-dimensional manifold M is properly unfolded as M x in E-space, then
predictive ability p will be maximized, and thus p across different values of E (i.e.,
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Figure 2: An example of manifold reconstruction.

different numbers of lags for the embedding) can be used to infer about the underlying
system M. This general approach to reconstructing M with M x is a useful method for
many reasons, including: 1) no additional variables beyond X may be needed to capture
the dynamics of the entire system; 2) it is unnecessary to control for deterministically
coupled unmeasured variables; and 3) no assumptions are made about linearity, stability,
or equilibrium (see Glaser et al. 2013).

The edm package takes this approach using three procedures: simplex projection;
S-mapping; and convergent cross-mapping (CCM). Simplex projection and S-maps are
typically used in an exploratory, diagnostic fashion to characterize the system producing
observed time-series or panel data (Sugihara and May 1990; Sugihara 1994), whereas
CCM is used to evaluate causal effects among variables (Sugihara et al. 2012). We
explain each of these in turn, which can be supplemented by the videos noted previously
and the brief introductory paper by Chang et al. (2017).

2.1 Simplex Projection

Simplex projection is a method for investigating the dimension of M and the extent
to which a system appears to behave deterministically (Sugihara and May 1990). Even
if data appear to be stochastic using typical methods such as autocorrelation, simplex
projection can help show if they are driven by deterministic processes causing chaotic
behavior that can masquerade as stochastic. This is done by forming an E-dimensional
reconstructed attractor manifold M x and assessing its characteristics. To reconstruct
M as M x, E lags of X are used to build an E-length vector of data that forms a single
point on M x (i.e., an embedding), which is done for each ¢ > E. In our approach, a
random 50/50 split of the E-length vectors is used to first form a ‘library’ of training
data to build M x by default. It should be noted that this is a random split of vectors
in the reconstructed manifold rather than the original time-series data. This approach
avoids the possible problem of creating additional gaps in the original time-series data.
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The library of training data therefore becomes a randomly determined set of E-length
vectors of lags on X that form points on a reconstructed E-dimensional manifold M x.

The other half of the data form a ‘prediction’ or test/validation set, which contains
E-length ‘target’ vectors falling somewhere on M x. Information in the reconstructed
manifold M x can then be used to predict the future of each target. Specifically, for each
target x; in the prediction set, the k = E + 1 nearest neighbors (z¢,,..., %) on M x
from the library set are found by Euclidean distances. These k neighbors (z¢,, ..., x¢,)
form a simplex on M x that is meant to enclose the target x; in F-space. The simplex
of neighbors enclosing the target is then ‘projected’ into the future (a’(tﬂ)l yens ,m(tﬂ)k)
to compute a weighted mean that predicts the future value of the target x4 1.

A weight w; associated with each neighbor ¢ is determined by the Euclidean distance
of the target to each neighbor and a distance decay parameter 6. Specifically, the weight
w; can be written as

Ui
' Z§:1 U
where
u; = exp <_9|wt_%> 7
(e
the Euclidean distance measure is denoted ||-||, and ¢, is the nearest neighbor in the

manifold (i.e., the most similar historical trajectory to the target). When 6§ = 0 the
distances are ignored, and all neighbors are weighted equally. As 0 increases, the weight
of nearby neighbors increases to represent more local states on M x (i.e., more similar
historical trajectories on X). By default, § = 1 to reflect greater weighting of nearer
neighbors and, thus, state-dependent evolution on the manifold M. Furthermore, in
simplex projection 6 is typically not varied and, instead, is merely fixed to 1 for all
analyses. Note that the current version of edm assumes the variables used in the mapping
are continuously distributed but future versions will include updated algorithms to better
suit alternative distributions (e.g., dichotomous variables).

The quality of predictions is evaluated by the correlation p of the future realizations
of the targets in the prediction set with the weighted means of the projected simplexes.
The mean absolute error (MAE) of the predictions, a measure that focuses more on
the absolute gap between observed and predicted data instead of the overall variations
like p, can also be used as a complement to p with the inverse property (i.e., higher
value indicates poorer prediction) and will range between 0 and 1 when variables are
pre-standardized (we implement a special z. prefix for this as noted below). When p and
MAE disagree, some authors have recommended using the lower of the two embedding
dimensions F (Glaser et al. 2011), but this often occurs only with noisy data, including
shorter time series where p may be more sensitive to outliers and thus MAE can be used
(Deyle et al. 2013, S1). A familiar term p? may also be used as a type of coefficient of
determination (akin to R?). Whatever the measure of prediction accuracy, it should be
noted that by default predictions are out-of-sample because the data used to reconstruct
a manifold and make predictions is unshared with the data being predicted (Sugihara
and May 1990; Sugihara 1994; Sugihara et al. 2012; Ye et al. 2016).
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To simplify prediction, only the first observation in each target vector’s future
realization (at ¢ 4+ 1) is used for p and MAE (rather than, for example, a multivariate
correlation using the entire set of E observations). The resulting p and MAE offer insight
into how well the reconstructed manifold M x makes out-of-sample predictions of the
future. When the original manifold M is properly unfolded in E-space as M x, the
neighbors of a target point on M x will provide information about the future of the
target (Deyle and Sugihara 2011), meaning p > 0 at a given FE.

To infer about the underlying system (e.g., its dimensionality D), p and MAE are
evaluated at different values of E, and the functional form of the p—F and MAE-FE
relationships can be used to infer about the extent to which the system appears to be
deterministic within the studied time frame (Sugihara and May 1990). Unlike typical
regression methods, increasing the dimensionality of a reconstructed manifold by adding
additional lags (i.e., larger F) will hurt predictions when this adds extraneous information,
thus making maximum p and minimum MAE useful for choosing E. In low-dimensional
systems, adding additional lags by increasing E will add extraneous information that
hurts predictions, so that p is maximized at a moderate E and falls as E increases. In
high-dimensional or stochastic systems with autocorrelation, this will not be the case
and p may increase with E or appear to approach an asymptote as E increases, which is
why the E—p and E-MAE relationship is diagnostically useful.

Ideally, a system can be described by fewer than 10 factors (i.e., fewer than 10
dimensions), such that prediction is maximized when E < 10. In this case, the system
may be considered low-dimensional and deterministic to the extent that predictive
accuracy is high (e.g., p > 0.7 or 0.8). In other words, deterministic low-dimensional
systems should make good predictions that are maximized when F is relatively small. If
prediction continues to improve or improves and then stabilizes as F increases, the system
may be tentatively considered stochastic. This may be due to either stochasticity with
autocorrelation (e.g., an AR process), or high-dimensional determinism that, practically
speaking, may be treated as stochastic. To describe such systems parsimoniously, an
E may be chosen that does not lose too much information compared to an E that
maximizes predictions (e.g., by hypothesis tests we describe later), because “it is also
important not to over-fit the model, and in some cases it may be prudent to choose a
smaller embedding dimension that has moderately lower predictive power than a higher
dimensional model. .. We do this both to prevent over-fitting the model, and to retain a
longer time series” (Clark et al. 2015, s3-s16).

Finally, this general approach can also be made multivariate by including additional
observations from different variables in each embedding vector (see Deyle et al. 2013,
2016a,b; Deyle and Sugihara 2011; Dixon et al. 1999, 2001). This is useful when an
attractor manifold cannot be fully reconstructed with a single variable, such as with
external forces stochastically acting on a system (Stark 1999; Stark et al. 2003). In
such a case, simplex projection can be conducted by adding additional variables to the
embedding and testing for improved predictive ability—with special considerations for
producing similar prediction conditions noted in the work cited here, specifically by using
the same number of nearest neighbors when including versus excluding the additional
variable in the lagged embedding. Conveniently, if an additional variable participates in
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an alternative deterministic system, then only a single observation from the alternative
system may need to be included in the embedding. If prediction does not improve,
then no new information is being provided by the additional variable (as Takens’s
theorem implies for coupled deterministic systems). Notably, in any multiple-variable
case, standardizing the variables helps ensure an equal weighting for all variables in the
embedding (e.g., using z-scores).

2.2 S-maps

S-maps or ‘sequential locally weighted global linear maps’ are tools for evaluating whether
a system evolves in linear or nonlinear ways over time (Sugihara 1994; Hsieh et al. 2008).
This is useful because linear stochastic systems such as VARs can be predictable due
to autocorrelation, which would appear as a high-dimensional system with p > 0 using
simplex projection. Therefore, a tool is needed to evaluate whether the system is actually
predictable due to deterministic nonlinearity, even if it is high-dimensional. S-maps
function as this tool.

A nonlinear system evolves in state-dependent ways, such that its current state
influences its trajectory on a manifold M (i.e., an unstable process). Conversely,
linearity exists if the trajectory on M is invariant with respect to a system’s current
state (as assumed in typical VAR and DPD models). This is evaluated by taking the
FE chosen from simplex projection and estimating a type of autoregression that varies
the weight of nearby observations (in terms of system states rather than time) with a
distance decay parameter # as in simplex projection. Of course, although we use the term
‘autoregression’, we are not describing a time-series or panel data model equation and,
instead, the S-map procedure should be interpreted as reconstructing and interrogating
a manifold (rather than modeling a series of predictor variables). As with simplex
projection, S-maps use a 50/50 split of data into library and prediction sets of E-length
embedding vectors by default. The library set represents a reconstructed manifold M x,
and the k nearest neighbors on the manifold in the library set are used to predict the
future of each target vector in the prediction set. For S-maps, each of the k neighboring
library vectors has E elements that can be thought of as akin to predictors—consider k
rows of data with E columns of predictor variables—such that the predictor set includes
k neighbors at F occasions t, ¢t — 7, ..., t — (E — 1)7. With a constant term ¢ included
by default, this is similar to a local regression with F + 1 predictors and k observations,
where E + 1 coefficients are computed to predict each target in the prediction set. Unlike
simplex projection where the number of neighbors k = E+1, in S-maps k is often chosen
to include the entire library of points on M x (i.e., the entire reconstructed manifold).
Numerically, the predicted value y at point ¢ (from the prediction set) is calculated as:

E
5= CG) X))
j=0

The coefficient vector C; can be calculated using singular value decomposition (SVD) in
the form B = AC, where B is a k-dimensional vector of the weighted future value for
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all the neighboring points and A is a weight matrix of the k neighboring points from the
library set (that will contain both past and future values from the original time-series
used to form the randomly determined library used to reconstruct the manifold as
M x), as well as the constant term (Sugihara 1994). Mathematically, B; = w;y; and
A; = w; X;. The weight w; in S-map is defined as

|2y — i
wizexp<—01 " )
% Zj:l e — x4
When 6 = 0 in the weight function, there is no differential weighting of neighbors on
M x, so in the univariate case the S-map is simply an F-order autoregression with a
random 50/50 split of training versus prediction data (i.e., the mapping is global rather
than local). However, as the weight 6 increases, predictions become more sensitive to
the nonlinear behavior of a system by increasing the weight on nearby neighbors to
make predictions. In other words, predictions become more state-dependent by using
more information from historical trajectories on M x that are more similar to targets in
a prediction set. If a system evolves in state-dependent ways, more information from
nearby neighbors should increase predictive ability.

Again, using p and MAE, and looking at the functional form of the p- and MAE-6
relationships, the nature of a system can be evaluated. If state-dependence is observed in
the form of larger p and smaller MAE when 6 > 0, then EDM tools can be used to model
the nonlinear dynamical behavior of the system. If nonlinearity is not observed, EDM
tools can still be used to evaluate causal relationships in a nonparametric fashion using
CCM (although CCM may be less efficient than more traditional methods in this case).
Here again, S-maps may be useful diagnostically because a linear stochastic system with
autocorrelation should show optimal predictions when 6 = 0, if for no other reason than
increasing local weighting as # > 0 may increase sensitivity to local noise.

As with simplex projection, S-mapping can also be done in a multivariate fashion
(see Deyle et al. 2013, 2016a,b; Dixon et al. 1999, 2001). Here again, the interest is
in determining whether additional information about a system is contained in other
variables due to external forces acting on the system, and tests for improved predictions
are possible to evaluate this (with information on how to conduct and interpret such
tests described in the work just cited). In the multivariate case, S-maps are more similar
to autoregressive-distributed lag (ARDL) or DPD models, but strictly only when 6 = 0.
As 6 increases, it becomes a more local regression wherein neighbors are identified and
predictions increasingly rely on the local information in a reconstructed manifold. Here
again, standardization can help ensure an equal weighting for the different variables in
the model, but it should always be kept in mind that the S-map is again not a traditional
regression model and, instead, is a reconstructed attractor manifold M x.

2.3 Convergent Cross-Mapping (CCM)

Convergent cross-mapping is a nonparametric method for evaluating casual association
among variables, even if they take part in nonlinear dynamical systems (Sugihara et al.
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2012). This method is based on the fact that if X is a deterministic driver of Y, or
X — Y, then the states of Y must contain information that can contribute to recovering
or ‘cross-mapping’ the states of X (Schiff et al. 1996). This method is an extension
of simplex projection, such that an attractor manifold M is reconstructed using one
variable and this is used to predict a different variable. If variables share an attractor
manifold M, then predictions can be made using the reconstructed manifold.

To elaborate, CCM is based on the fact that if variables X and Y participate in
the same dynamical system with manifold M, reconstructed manifolds M x and My
can be mapped to each other. In turn, it is possible to test whether X and Y share
information about a common dynamical system and it is possible to test the extent to
which the variables causally influence each other in a directional sense (i.e., X — Y
and/or Y — X). This is based on a counterintuitive fact: if X — Y in a causal sense,
then historical information about X is contained in Y and thus it is possible to use My
to predict X via simplex projection (see Sugihara et al. 2012), which we symbolize as
X|My .

This is counterintuitive because in typical time-series or panel data methods, causes
are used to explain or predict outcomes rather than the reverse. However, in CCM
the outcome Y cross-maps or ‘xmaps’ the causal variable X, with a shadow manifold
My predicting X (i.e., X = X|My, which heuristically can be read left-to-right as
implying a potential X — Y effect). The outcome is used to predict the causal variable
because searching for causes requires starting with an outcome and seeing if its dynamical
structure My carries the signature of a cause X (Schiff et al. 1996). Counterintuitively,
even if X — Y causality exists (i.e., X = X|My works well), if Y does not cause X
then M x will function poorly when predicting Y, because M x will be a function of
variables other than Y (i.e., Y = Y|M x will not work well; Sugihara et al. 2012).

The term ‘convergent’ in CCM describes the criterion by which causality is assessed.
This term reflects the fact that if X — Y causality exists then prediction accuracy
(e.g., a correlation p among X and X) will improve as the library size L of points on
My increases. Larger libraries improve predictions in this case because they make the
manifold My denser, and therefore nearest neighbors become nearer, which improves
predictions if causal information exists in the local manifold (Sugihara et al. 2012).
However, if X—Y associations are merely statistical, then increasing L should not improve
prediction accuracy because denser manifolds will not provide additional predictive
information. In sum, if X — Y causality exists, then not only will My cross-map X in
the form of prediction accuracy for X|My, but also as the number of points L on My
increases, prediction accuracy will improve—as tested and graphed via L—p (or L-MAE)
relationships (see Ye et al. 2015b).

2.4 Missing Data and Sample Size Considerations

Of note is the way that missing data are currently treated, which may aid in a general
understanding of EDM. Currently, missing data are by default dealt with using a
deletion method, such that a single missing datum causes up to F missing points on



10 The edm Package for Empirical Dynamic Modeling in Stata

a reconstructed manifold M x. Consider a dataset wherein the ¢t = 10 observation on
X is missing. In this case, with ' = 3 the embedding vectors at time 8, 9, and 10 will
all contain the missing datum (e.g., when ¢ = 8 the missing datum takes on the last
element in the embedding vector; when ¢ = 10 the missing datum takes on the first
element in the embedding vector). Deletion of all E = 3 embedding vectors (i.e., points
on M x) is done because finding nearest neighbors and estimating S-map coefficients
requires information in all three dimensions. Thus, because the manifold exists in F
dimensions, any points on the manifold that would include a missing datum cannot be
used for computations. Therefore, similar to time-series and panel data models with
lagged regressors wherein the lag order dictates the amount of information lost in the
regression, current EDM implementations lose information as a function of E and, of
course, the missing data patterns. Optimally, missing data rates are low and, when
data are missing, they are missing adjacently in time rather than spread throughout a
dataset.

In cases where significant missing values are present, appropriate imputations could
help the reconstruction of the manifold as shown in van Dijk et al. (2018). However,
we caution the reader to carefully consider typical multiple imputation or interpolation
methods for missing data. The problem with imputation is that typical methods are
not sensitive to the nonlinear dynamics that EDM is meant to allow studying. When
linear associations are assumed or parametric nonlinear approaches are used then this
can obscure a dynamic signal. The study of how to impute missing values in nonlinear
dynamic systems is beyond the scope of our paper, but the reader should know that it is
not trivial and we are considering various options.!

Next many readers may be considering required sample sizes for EDM analysis.
There is no simple cut-off in terms of sample size but one assumption for EDM is that a
dynamical system of interest has been observed across a relevant range of its states over
time, by which we mean it has evolved through relevant regions of its state space over
time. Preferably the system will have been observed evolving through these locations
more than once to help in the process of determining its proper dimensionality during
simplex projection and maximizing predictability in CCM (see Sugihara et al. 2012; Ye
et al. 2015b). For example if a system tends to dynamically fluctuate over a 10-year
period in terms of some substantive phenomena of interest, then measuring the system
over at least a period of 10 years and preferably 20 with adequate resolution would be
needed to capture its dynamical behavior patterns—this can be understood as a typical
concern about generalizability when considering sampling issues. When describing edm
command options in the following section we note that using the full dataset for manifold
reconstruction and predictions (rather than a 50/50 split) may be useful for smaller
datasets.

1. Future versions of the edm program will implement two methods: 1) a method that fixes distances
for missing values based on an estimated expected distance so that missing values do not require
deleting any observed data (an ‘allowmissing’ option); and 2) a method that concatenates all
available data so that none is deleted, and then includes the patterns of the missingness as part of
the dynamics (a ‘dt’ option). Notably, this second method may be used when time is measured
continuously, causing uneven intervals between occasions of measurement (hence the dt term). As
the work is still in progress, this is not discussed within this paper.
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3 Syntax and Options

The command edm implements a series of tools that can be used for empirical dynamic
modeling in Stata. The core algorithm is written in Mata to achieve reasonable execution
speed—although due to nearest-neighbor search and distance computations the program
slows down considerably as sample sizes increase beyond a few thousand. The command
keyword is edm, and should be immediately followed by a subcommand such as explore
or xmap. A dataset must be declared as time-series or panel data by the tsset or xtset
command prior to using the edm command, and time-series operators including 1., f.,
d., and s. can be used (the last for seasonal differencing). Standardizing variables used
in the main analysis can also be done with the prefix z. which uses z-scores for analysis
instead of the original variable. Note that when combined with time-series operators
such as first-differencing with z.d. (the z. must appear first), the z-scores are computed
after the first-differencing.

The explore subcommand follows the syntax below and supports one main variable
for exploration using simplex projection or S-mapping. In the case of multivariate
embedding, the option extraembed () or simply extra() can be used. A multivariate
embedding is constructed as follows: the main variable forms an F-dimensional lagged
embedding starting at ¢, and a single observation at ¢ from the additional variables are
added as the last elements in the embedding (in S-maps this will mean the last columns
of data in the regression will belong to the additional variables).

edm explore wariable [if emp][, e(numlist ascending) tau(integer)
theta(numlist ascending) k(integer) algorithm(string) replicate(integer)
dot (integer) tp(integer) seed(integer) predict(wvariable) crossfold(integer)

ci(integer) extraembed(wvariables) details full reportrawe force}

The second subcommand xmap performs CCM. The subcommand follows the syntax
below and requires two variables to follow immediately after xmap. It shares many of
the same options with the explore subcommand, although there are some differences
given the different purpose of the analysis.

edm xmap variables [if exp] [ , e(integer) tau(integer) theta(real)
library(numlist ascending) k(integer) algorithm(string) tp(integer)
replicate(integer) dot(integer) direction(string) seed(integer)
predict (variable) ci(integer) extraembed(variables) savesmap (string)

details full reportrawe force]

Both subcommands support the if condition and options include:?

e(numlist ascending) specifies the number of dimensions E used for the main variable
in the manifold reconstruction. If a list of numbers is provided, the command will

2. Additional options will be introduced as the package is under active development.
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compute results for all numbers specified. The xmap subcommand only supports a
single integer as the option whereas the explore subcommand supports the option
as a numlist. The default value for F is 2, but in theory E can range from 2 to
almost half of the total sample size. The actual E used in the estimation may be
different if additional variables are incorporated. An error message is provided if the
specified value is out of range. Missing data will limit the maximum F under the
default deletion method.

tau(integer) allows researchers to specify the ‘time delay’, which essentially sorts the
data by the multiple 7. This is done by specifying lagged embeddings that take
the form: ¢, ¢t — 7, ..., t — (F — 1)7, where the default is tau(1) (i.e., typical lags).
However, tau(2) is set then every-other ¢ is used to reconstruct the attractor and
make predictions—this does not halve the observed sample size because both odd
and even t would be used to construct the set of embedding vectors for analysis.
This option is helpful when data are oversampled (i.e., space too closely in time)
and therefore very little new information about a dynamic system is added at each
occasion. However, the tau() setting is also useful if different dynamics occur at
different times scales, and can be chosen to reflect a researcher’s theory-driven interest
in a specific timescale (e.g., daily instead of hourly). Researchers can evaluate whether
7 > 1 is required by checking for large autocorrelations in the observed data (e.g.,
using Stata’s corrgram function). Of course, such a linear measure of association may
not work well in nonlinear systems and thus researchers can also check performance
by examining p and MAE at different values of 7.

theta(numlist ascending) is the distance weighting parameter for the local neighbors
in the manifold. It is used to detect the nonlinearity of the system in the explore
subcommand for S-mapping. Of course, as noted above, for simplex projection and
CCM a weight of theta(1) is applied to neighbors based on their distance, which is
reflected in the fact that the default value of 8 is 1. However, this can be altered even
for simplex projection or CCM (two cases that we do not cover here). Particularly,
values for S-mapping to test for improved predictions as they become more local
may include the following command: theta(0 .00001 .0001 .001 .005 .01 .05
.1 .511.52346 8 10).

k(integer) specifies the number of neighbors used for prediction. When set to 1, only the
nearest neighbor is used, but as k increases the next-closest nearest neighbors are
included for making predictions. In the case that k is set 0, the number of neighbors
used is calculated automatically (typically as k = E + 1 to form a simplex around
a target), which is the default value. When k < 0 (e.g., k(-1)), all possible points
in the prediction set are used (i.e., all points in the library are used to reconstruct
the manifold and predict target vectors). This latter setting is useful and typically
recommended for S-mapping because it allows all points in the library to be used
for predictions with the weightings in theta. However, with large datasets this may
be computationally burdensome and therefore k(100) or perhaps k(500) may be
preferred if T or NT is large.

algorithm(string) specifies the algorithm used for prediction. If not specified, simplex
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projection (a locally weighted average) is used. Valid options include “simplex” and
“smap”, the latter of which is a sequential locally weighted global linear mapping
(or S-map as noted previously). In the case of the xmap subcommand where two
variables predict each other, the algorithm(smap) invokes something analogous
to a distributed lag model with E + 1 predictors (including a constant term c)
and, thus, E + 1 locally-weighted coeflicients for each predicted observation/target
vector—because each predicted observation has its own type of regression done with
k neighbors as rows and E + 1 coefficients as columns. As noted below, in this case
special options are available to save these coefficients for post-processing but, again,
it is not actually a regression model and instead should be seen as a manifold.

replicate(integer) specifies the number of repeats for estimation. The explore sub-
command uses a random 50/50 split for simplex projection and S-maps, whereas the
xmap subcommand selects the observations randomly for library construction if the
size of the library L is smaller than the size of all available observations. In these
cases, results may be different in each run because the embedding vectors (i.e., the
E-dimensional points) used to reconstruct a manifold are chosen at random. The
replicate option takes advantages of this to allow repeating the randomization
process and calculating results each time. This is akin to a nonparametric bootstrap
without replacement, and is commonly used for inference using confidence intervals
in EDM (Tsonis et al. 2015; van Nes et al. 2015; Ye et al. 2015b). When replicate
is specified, such as replicate(50), mean values and the standard deviations of the
results are reported across the 50 runs by default. As we note below, it is possible to
save all estimates for post-processing using typical Stata commands such as svmat,
allowing the graphing of results or finding percentile-based measures with the pctile
command.

ci(integer) reports the confidence interval for the mean of the estimates (MAE and/or p),
as well as the percentiles of their distribution when used with replicate or crossfold.
The first row of output labeled “Est. mean CI” reports the estimated confidence
interval of the mean p, assuming that p has a normal distribution—estimated as
the corrected sample standard deviation (with N — 1 in the denominator) divided
by the squared root of the number of replications. The reported range can be used
to compare mean p across different (hyper) parameter values (e.g., different E, 6,
or L) using the same datasets as if the sample was the entire population (such
that uncertainty is reduced to 0 when the number of replications — o0). These
intervals can be used to test which (hyper) parameter values best describe a sample,
as might be typically used when using crossfold validation methods. The row labeled
with “Pc (Est.)” follows the same normality assumption and reports the estimated
percentile values based on the corrected sample standard deviation of the replicated
estimates. The row labeled “Pc (Obs.)” reports the actual observed percentile values
from the replicated estimates. In both of these latter cases the percentile values
offer alternative metrics for comparisons across distributions, which would be more
useful for testing typical hypotheses about population differences in estimates across
different (hyper) parameter values (e.g., different E, 6, or L), such as testing whether
a dynamical system appears to be nonlinear in a population (i.e., testing whether p
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is maximized when ¢ > 0). The number specified within the ci() bracket determines
the confidence level and the locations of the percentile cut-offs. For example, ci(90)
instructs edm to return 90% CI as well as the cut-off values for the 5th and 95th
percentile values—because p and MAE values cannot or are not expected to take on
negative values, we typically prefer one-tailed hypothesis tests and therefore would
use ci(90) to get a one-tailed 95% interval. These estimated ranges are also included
in the e() return list as a series of scalars with names starting with “ub” for upper
bound and “Ib” for lower bound values of the CIs. These return values can be used
for further post-processing.

crossfold(integer) asks the program to run a cross-fold validation of the predicted
variables. crossfold(5) indicates a 5-fold cross validation. Note that this cannot
be used together with replicate. This option is only available with the explore
subcommand.

dot(integer) controls the appearance of the progress bar when the replicate() or
crossfold() option is specified. By default, there is one dot for each completed
cross-mapping estimation. dot (0) removes the progress bar.

full asks the program to use all possible observations in the manifold construction
instead of the default 50/50 split in the explore mode. This is effectively the same
as leave-one-out cross-validation because the observation itself is not used for the
prediction. This may be useful with small samples (e.g., T' < 50) where a random
split would result in a manifold with an insufficient number of data points (neighbors)
used for calculations when conducting a search for optimal up to roughly 20. Sample
size considerations however extend beyond this and include whether data contain runs
of repeated values that offer no unique information for prediction. Furthermore, as
noted previously one assumption for EDM is that a system has been observed across
a relevant range of locations in its state space over time (and preferably the system
will have evolved through these locations more than once). When in doubt users can
consider using the full option to take advantage of all information available in a
dataset for manifold reconstruction and prediction.

predict(variable) allows saving the internal predicted values as a variable, which could
be useful for plotting and diagnostics as well as forecasting.

tp(integer) adjusts the default forward-prediction period. By default, the explore mode
uses tp(1) and the xmap mode uses tp(0). To show results for predictions made
two periods into the future, for example, use tp(2).

force asks the program to try to continue even if the required number of unique
neighboring observations is not sufficient given the default or user-specific k (), such
as when there are many repeated values which must be excluded. This is a common
case where in past research has excluded E-length runs of zeros by default as they
add no unique information (see Deyle et al. 2016a).

extraembed(variables) or extra(variables) allows incorporating additional variables in
the embedding (i.e., a multivariate embedding), e.g., extra(z 1.z) for the variable
z and its first lag 1.z. Note that the special prefix for standardization z. also works
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here.

reportrawe asks the program to report the number of dimensions constructed from the
main variable which is associated with the requested e(). By default, the program
reports the actual E used to reconstruct the manifold, which will include any variables
used with the extra() option.

details asks the program to report the results for all replications instead of a summary
table with mean values and standard deviations when the replicate or crossfold
options are specified. Irrespective of using this option, all results can be saved for
post-processing.

seed(integer) specifies the random number seed. In some cases users may wish to use
this in order to keep library and prediction sets the same across simplex projection
and S-mapping with a single variable, or across multiple CCM runs with different
variables.

library(numlist ascending) specifies the total library size L used for the manifold
reconstruction. Varying the library size is used to estimate the convergence property
of the cross-mapping, with a minimum value L, = F 4+ 2 and the maximum equal
to the total number of observations minus sufficient lags (e.g., in the time-series case
without missing data this is Liax =T + 1 — E). An error message is given if the L
value is beyond the allowed range. To assess the rate of convergence (i.e., the rate
at which p increases as L grows), the full range of library sizes at small values of
L can be used, such as if £ =2 and T' = 100, with the setting then perhaps being
“library(4(1)25 30(5)50 54(15)99)”. This option is only available with the xmap
subcommand.

savesmap(string) allows S-map coefficients to be stored in variables with a specified pre-
fix. For example, specifying “edm xmap x y, algorithm(smap) savesmap(beta)
k(-1)” will create a set of new variables such as betal_10_repl. The string prefix
(e.g., ‘beta’) must not be shared with any variables in the dataset, and the option
is only valid if the algorithm(smap) is specified. In terms of the saved variables
such as betal 10_repl, the first number immediately after the prefix ‘beta’ is 1 or 2
and indicates which of the two listed variables is treated as the dependent variable
in the cross-mapping (i.e., the direction of the mapping). For the “edm xmap x y’
case, variables starting with betal_ contain coefficients derived from the manifold
M x created using the lags of the first variable ‘x’ to predict Y, or Y|M x. This
set of variables therefore store the coefficients related to ‘x’ as an outcome rather
than a predictor in CCM. Keep in mind that any ¥ — X effect associated with
the betal_ prefix is shown as Y| M x, because the outcome is used to cross-map the
predictor, and thus the reported coefficients will be scaled in the opposite direction
of a typical regression (because in CCM the outcome variable predicts the cause).
To get more familiar regression coefficients (which will be locally weighted), variables
starting with beta2_ store the coefficients estimated in the other direction, where the
second listed variable ‘y’ is used for the manifold reconstruction My for the mapping
X|My in the “edm xmap x y” case, testing the opposite X — Y effect in CCM, but
with reported S-map coefficients that map to a Y — X regression. We appreciate

)
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that this may be unintuitive, but because CCM causation is tested by predicting the
causal variable with the outcome, to get more familiar regression coefficients requires
reversing CCM’s causal direction to a more typical predictor outcome regression logic.
This can be clarified by reverting to the conditional notation such as X|My, which
in CCM implies a left-to-right X — Y effect, but for the S-map coefficients will be
scaled as a locally-weighted regression in the opposite direction ¥ — X. Moving on,
following the 1 and 2 is the letter b and a number. The numerical labeling scheme
follows the order of the lag for the main variable and then the order of the extra
variables introduced in the case of multivariate embedding. b0 is a special case which
records the coefficient of the constant term in the regression. The final term rep1
indicates the coefficients are from the first round of replication (if the replicate()
option is not used then there is only one). Finally, the coefficients are saved to match
the observation ¢ in the dataset that is being predicted, which allows plotting each
of the F estimated coefficients against time and/or the values of the variable being
predicted. The variables are also automatically labeled for clarity. This option is
only available with the xmap subcommand.

direction(string) allows users to control whether the cross mapping is calculated
bidirectionally or unidirectionally, the latter of which reduces computation times
if bidirectional mappings are not required. Valid options include “oneway” and
“both”, the latter of which is the default and computes both possible cross-mappings.
When oneway is chosen, the first variable listed after the xmap subcommand is
treated as the potential dependent variable following the conventions in the regression
syntax of Stata such as the ‘reg’ command, so “edm xmap x y, direction(oneway)”
produces the cross-mapping Y |M x, which pertains to a Y — X effect. This is
consistent with the betal_ coefficients from the previous savesmap(beta) option.
On this point, the direction(oneway) option may be especially useful when an
initial “edm xmap x y” procedure shows convergence only for a cross-mapping Y| M x,
which pertains to a Y — X effect. To save time with large datasets, any follow-up
analyses with the algorithm(smap) option can then be conducted with “edm xmap x
y, algorithm(smap) savesmap(beta) direction(oneway)”. To make this easier
there is also a simplified oneway option that implies direction(oneway). This
option is only available with the xmap subcommand.

Two additional subcommands are version and update. The version subcommand
reports the current version number and the update subcommand allows the user to
update the ado file. The update subcommand supports the following options:

develop updates the command to its latest development version. The development
version usually contains more features but may be less tested.

replace specifies whether you allow the update to override your local ado files. Together
these allow the user to update the edm program to the latest development version by
running “edm update, develop replace”.
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4 Qutput and Saved Result

A typical set of output using the explore subcommand is shown below.

. edm explore x

Empirical Dynamic Modelling
Univariate mapping with x and its lag values

Actual E theta rho MAE

2 1 .99908 .0071967

Note: Number of neighbours (k) is set to E+1
Note: Random 50/50 split for training and validation data

The output of the explore subcommand includes the selected range of system dimen-
sions F and 6 values, and it reports the corresponding mapping/prediction accuracies in
the form of p (correlation coefficient) and MAE (mean absolute errors). Of course, by
pre-standardizing the variables used, MAE can be understood as the conceptual inverse
of p (i.e., 1 — MAE), and these can then be plotted together.

A typical set of output using the xmap subcommand is shown below.

. edm xmap x y

Empirical Dynamic Modelling
Convergent Cross-mapping result for variables x and y

Mapping Library size rho MAE
y ~ yIM(x) 150 .23019 .19673
x ~ x|M(y) 150 .69682 .13714

Note: The embedding dimension E is 2

The xmap subcommand returns a table listing the direction of the mapping. The
notation x ~ x |[M(y) indicates a comparison between the observed x values and the
predicted x values using a manifold reconstructed from y. Recall that due to the
counterintuitive nature of CCM, a prediction X|My allows testing for a causal effect in
an X — Y fashion. As with the explore subcommand, p and MAE are given. Recall
that the maximum library size is used by default unless the library() option is used.
Given the nature of the algorithm, users should expect significant computation time
when a large library is used.

In addition to the table output, the edm command also stores the results in e() as
matrices for post-processing. Notably, return matrices include:
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e(explore_result) stores the p and MAE values for each combination of the parameters
in the exploration mode.

e(xmap_1) and e(xmap_2) store the p and MAE values in the cross-mapping results,
with one matrix per direction of potential causality. The suffix of the matrix indicates
the direction of the implied causality in a way that, again, is consistent with Stata
defaults for programs such as reg. In the case of e (xmap_1), it stores the result where
the observed value of the first variable was considered as the dependent variable,
which if the command “edm xmap x y” is used will be the mapping y ~ yM(x)
pertaining to an Y — X effect (i.e., the first listed variable is caused by the second).
Alternatively, the matrix e (xmap_2) contains the results associated with the mapping
x ~ x|M(y), which would pertain to an X — Y effect (i.e., the second listed variable
is caused by the first). The numbering of the direction in the return matrix is
consistent with the saved coefficients in the savesmap() option, as well as the intent
of the direction(oneway) option where the first listed variable is treated as an
outcome of the second (as in “reg x y”).

5 Examples

5.1 Creating a Dynamic System

The logistic map has often been used to demonstrate a nonlinear dynamic system,
displaying regular periodic behavior as well as deterministic chaos (May 1976). This
particular system has been widely cited in EDM literature (see Perretti et al. 2013; Ye
and Sugihara 2016; Mgnster et al. 2017). Here, we create an arbitrary dynamical system
with two logistic maps coupled through linear coefficients to illustrate the use of the edm
command. Our focus is mostly on the statistical properties of the data and the EDM
results for a model:

Tt = Tt—1 [379 (]. — l'tfl) — O.OOyt71]
Yt = Yt—1 [379 (]. — yt_l) — 0.201’25_1] .

A logistic map is well known to exhibit chaotic patterns with a specific combination
of parameters (Jackson and Hiibler 1990). The values in the equations were chosen to
exploit this property, creating a dynamical system. The two variables z and y both
depend on their own past values and are coupled with each other through the last term
of the equation. In this case, x is set to be determined by its own past values only, while
y is determined by past values of both y and x.

Figure 3 plots the values for  and y over time when x; and y; are set to 0.2 and 0.3
respectively. Observations with a ¢ smaller than 300 were burned to allow the dynamics
to mature.® The pairwise correlation coefficient between x and y is 0.15, and it is not
significant at the 0.05 level, giving the appearance of two unrelated variables. Indeed,
the plot from Figure 3 shows that the variables could appear positively or negatively
correlated depending on the temporal window in which data were collected from the

3. The code for reconstructing this dataset is available in the supplementary file.
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Figure 3: Plot of a nonlinear dynamic system.

system. This case mimics a potentially common scenario wherein ‘mirage correlations’
can exist in a dataset and, more importantly, causation can be inferred without the
presence of a linear correlation, which using typical linear indices such as correlation
coefficients would be missed.

5.2 Exploring the system’s dimensionality

The first step in EDM analysis is to establish the dimensionality of the system, which
can be understood as approximating the number of independent variables needed to
reconstruct the underlying attractor manifold M that defines the system (Sugihara and
May 1990; Sugihara et al. 2012). This is done by simplex projection with the explore
subcommand, using the range of dimensions specified in the e() option.

Using the explore subcommand, the data are randomly split into two halves, wherein
one half is used as the library (or training) dataset to construct the shadow manifold M x,
and the other half is the prediction (or test) dataset used to evaluate the out-of-sample
predictive ability of the projections on M x. The optimal F is often selected based on
the highest p or lowest MAE between the predicted and the observed values (while also
attempting to keep the model somewhat parsimonious). These two measures generally
agree, but if they do not then the one indicating the lowest embedding dimension £ may
be used (Glaser et al. 2011). Also, in the case of small samples MAE may be preferred
because it is less sensitive to outliers (Deyle et al. 2013).

In this example, we explore all dimensions between 2 and 10 using simplex projection
to identify the optimal E, although with large datasets this can be extended to E = 20
or beyond. As the library set is randomly selected, we replicated the method 50 times
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through the option rep(50) to estimate the average performances across the 50 runs.
The command and the output are shown below. The standard deviations are bias-
corrected, using N — 1 in the denominator. Note that the reported SD values are
summary statistics instead of the SE of the p and MAE estimates. The ci() option
can be used to report the estimated confidence intervals for the mean value of p derived
from multiple replications. The edm command can also be used in combination with
the jackknife prefix for additional controls. It is common to select the E value with the
highest p or lowest MAE, as its reconstructed manifold best matches the observed data
(Sugihara et al. 2012; Ye et al. 2015b).

. edm explore y, e(2/10) rep(50)

Empirical Dynamic Modelling
Univariate mapping with y and its lag values

rho MAE
Actual E theta Mean Std. Dev. Mean Std. Dev.
2 1 .97818 .0087775 .033184 .0054952
3 1 .96243 .015995 .042502 .0063758
4 1 .94326 .019242 .051377 .0067221
5 1 .91181 .029522 .062658 .0086431
6 1 .87719 .043446 .072902 .010937
7 1 .8273 .053334 .085823 .011906
8 1 .77604 .055847 .099908 .012017
9 1 .73687 .060581 .1096 .011713
10 1 .7062 .061469 .11721 .010954

Note: Results from 50 runs
Note: Number of neighbours (k) is set to E+1
Note: Random 50/50 split for training and validation data

The results show that p drops and MAE increases as E increases. This suggests
that the optimal F is 2, which is the exact number of independent variables we used
to create the dynamic system. The result can also be plotted using the contents of the
e(explore_result) matrix returned, as shown in Figure 4. Also, hypothesis tests can
be performed on p and MAE at different values of E using methods we describe below,
which may be useful for selecting E with an interest in maintaining model parsimony
(i.e., smaller E) as is often done in autoregressions.

5.3 Nonlinearity detection using S-map

We next evaluate the system for nonlinearity by using S-maps or ‘sequentially locally
weighted global linear maps’ (Sugihara 1994; Hsieh et al. 2008). Linearity exists if the
trajectory on a manifold M is invariant with respect to a system’s current state, whereas
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Figure 4: p—FE plot of variable y.

nonlinearity exists if system evolution is state-dependent. This is evaluated by taking
the optimal E chosen from simplex projection and estimating a type of regression model
that varies the weight of nearby observations (in terms of system states rather than
time) with a distance decay parameter 6. Again, however, we emphasize that it should
not be interpreted as a typical regression model, but rather as a reconstructed manifold.

When 6 = 0 in the option theta(0), there is no differential weighting of neighbors on
M x, so the S-map reduces to a type of autoregressive model with a random 50/50 split of
library versus prediction data. However, as 6 increases, predictions become more sensitive
to the nonlinear behavior of a system by drawing more heavily on nearby observations
to make predictions. In other words, predictions become more state-dependent. Again
using p and MAE and forming p—0 and MAE-0 plots, the nonlinearity of the system
can be evaluated. If nonlinearity or state-dependence is observed in the form of larger
p and smaller MAE when 6 > 0, EDM tools are needed to model system behavior. If
the system is linear, p would not increase as 6 goes above zero. In this case, models
with linearity assumptions may also be appropriate such as, potentially, autoregressive
approaches.

Both the explore and xmap subcommands support S-mapping instead of simplex
projection for the local predictions. An example is given below to analyze the nonlinearity
of the variable y in the previous example. In this case, we explore possible 6 values
between 0 and 5 with an increment of 0.01. Additionally, we include all observations for
the local prediction by specifying a negative number in the k() option. This allows for
more stable results with low F or in low data-density regions of My .

. edm explore y, e(2) algorithm(smap) theta(0(0.01)5) k(-1)



22 The edm Package for Empirical Dynamic Modeling in Stata

Figure 5: Nonlinearity diagnosis (p—f plot) of variable y.

The result from the command above can also be plotted graphically using the return
matrix e(explore_result) as shown in Figure 5. The increase of p as 6 increases is
consistent with the characteristics of a highly nonlinear system such as the logistic map.
As we show below, hypothesis tests of change in p or MAE can be done to test for
improvements in predictive ability when 6 = 0 versus max p or min MAE (i.e., a test of
Ap or AMAE; Hsieh and Ohman 2006; Glaser et al. 2013; Ye et al. 2015a).

5.4 Causality detection using CCM

In the earlier steps, the analysis suggests that the optimal E for this example is 2, which
is what we expect given the data generation. We now use the xmap subcommand to derive
the bivariate (overall) causal effect between the variables z and y using the previously
observed E = 2 value. Although in most cases we would recommend standardizing
variables to put them on the same scale, in this hypothetical example it is less relevant.

In CCM, the casual link between variables is evaluated by predicting values of
one variable—the potential cause—using the reconstructed manifold of another—the
potential outcome—which is based on Sugihara et al. (2012). In essence, this is a
kind of two-variable simplex projection wherein the library set is formed using one
variable and contemporaneous predictions are made for another variable. Using the
predicted versus observed values, p and MAE are calculated. It should be noted that
bivariate cross-mapping captures the overall casual effect, combining both the direct
effect (X — Y) and the possible indirect effects (X — Z — Y).4

4. Tt is possible use EDM results to estimate the direct and the indirect causal effect when all variables
in the causal pathways are observed. See Leng et al. (2020) for details.
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Of note is that simplex projection may show that different E values characterize
different variables. If this were the case, the E chosen for reconstructing a manifold
can be used with the direction(oneway) option to run separate CCM procedures
for each variable. In this case, the causal variable’s E' can be used because its signal
is being predicted by the outcome. For example, if £ = 2 for y but £ = 4 for z,
the following CCMs could be run: “edm xmap x y, e(2) direction(oneway)” for
the Y|Mx or Y — X case; and “edm xmap y x, e(4) direction(oneway)” for the
X|My or X =Y case. Here, the manifold reconstructed by the first variable is used
to predict the second, so the F from simplex projection applies to the second variable
listed.

The xmap subcommand facilities CCM. An example is as follows:

. edm xmap x y, e(2)

Empirical Dynamic Modelling
Convergent Cross-mapping result for variables x and y

Mapping Library size rho MAE
y ~ yIM(x) 150 .23019 .19673
x ~ xIM(y) 150 .69682 .13714

Note: The embedding dimension E is 2

Without specifying a value for library(), by default the entire dataset is used as
the library. In other words, all possible information from one variable is used to make
predictions of another. This will often be a useful first step in CCM because it is not
always easy to know beforehand what the maximum library size is (e.g., in the panel
data case with imbalanced data, etc.), and this value can then be manually added later
as the maximum library size when evaluating results across L. Furthermore, if CCM at
the maximum L shows no meaningful predictability, then the question of convergence
is moot. Specifically, if there is a causal X — Y relationship (i.e., X|My ), we expect
meaningful predictions at maximum L and prediction should improve as more data
points are used in the library. To assess this, the library() option specifies the range
of the library sizes and the replicate() option allows repeating the estimations to
show the impact of random sampling at the lower library lengths. When the library size
specified is smaller than the maximum available size, a random subsample is selected for
the manifold reconstruction and the replicate() option becomes possible.

The example below estimates p at library sizes between 5 and 150, and repeats the
process 10 times (taking a random draw to form the manifold 10 times at each library
size). Multiple repeats are used to ensure enough point estimates (number of repeats
for each step in library size) to clearly identify any trends in predictability p as the
library size increases, as well as differences in these trends between both directions for
the mappings (both z—y and y—x; see Figure 6). Of course, for the maximum library size
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this replication process does not produce different results because all observations are
used. Because this maximum library size is the most computationally demanding, with
large datasets it may be prudent to separately run the xmap procedure at the maximum
library size only once, and then use the replicate option at small library sizes only to
assess uncertainty.

. edm xmap x y, e(2) rep(10) library(5/150)
(output omitted )

The detailed results are stored in two return matrices e (xmap-1) and e(xmap-2),
which can be converted to variables for easy manipulations using Stata’s svmat command.
Recall that e(xmap_1) treats the first listed variable x as the outcome of the second
y (e, YIMx), and e(xmap_2) treats the second listed variable y as the outcome of
the first x (i.e., X|My). The example below stores the results and plots the p—L
convergence graph as in Figure 6. Each plotted dot represents a point estimate and
there are ten estimates for each library size as specified by replicate(10). The local
polynomial smoothing lines show the general trend of the p values as the reconstructed
manifold gets denser (i.e., as L increases).

. mat cl = e(xmap_1)

. mat c2 = e(xmap_2)

. svmat cl1, names(xy)
(output omitted )

. svmat c2, names(yx)
. label variable xy3 "y|M(x)"
. label variable yx3 "x|M(y)"

. twoway (scatter xy3 xy2, mfcolor(%30) mlcolor(%30)) ///
> (scatter yx3 yx2, mfcolor(%30) mlcolor(%30)) ///
> (1poly xy3 xy2) (lpoly yx3 yx2), xtitle(L) ytitle(rho) legend(col(2))

The p—L diagnosis figure suggests that the predicted x from the manifold constructed
from y (i.e., 2| M) consistently outperforms the reversed pair, suggesting the data-series
y contains more information about x than the other way around. This indicates x CCM-
causes y (i.e., X — Y'), which matches the reality of the model wherein y is caused by x,
but x is entirely determined by its lagged values rather than y. As we now show, this
and other hypotheses can be tested directly in various ways. It should be also noted that
the result do not necessarily rule out the possibility of a bidirectional causal relationship,
especially when both predictions are similar and at a relatively high level. In such case,
the relative difference in the prediction performances may be used to determine the
more dominate causal direction without precluding an inference of bidirectional causality.
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Figure 6: p—L convergence diagnosis.

When prediction performances from both directions are poor,® it is also reasonable to
consider the possibility that the variables are causally independent. Alternatively, when
predictability is high for both variables but no convergence is observed then an exogenous
third-variable may potentially be driving both variables.

5.5 Hypothesis Testing with Confidence Intervals and Null Distribu-
tions

There are three primary ways to test hypotheses about causal effects and dominate
causal direction in our edm package that we treat here: jackknifing; multiple replications
with the replicate() option (using the ci() option to enable automated reporting of
the CT for the mean p); and ‘surrogate data’ methods that use permutations on ¢ to
form null distributions. The first two rely on the random selection of observations to
reconstruct a manifold, creating variation in results. One way to estimate the SE of the
estimates due to the resampling process is with the jackknife prefix, which generates
estimates for p. A CCM example is as follows:

. qui jackknife: edm xmap x y, e(2)

. ereturn display

Jackknife
Coef. Std. Err. t P>t [95% Conf. Intervall]
yIM(x) .2301938 .1681661 1.37 0.173 -.1021046 .5624921
x|M(y) .6968181 .0722177 9.65 0.000 .5541151 .8395212

5. While there is no strict cut-off value, the cross-mapping correlation (p) between two random variables
that are independent generally do not exceed 0.2.
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This is particularly useful in CCM because it offers a confidence interval around p at
the maximum library size, which is arguably the best estimate of p in CCM applications—
the replicate() option cannot do this because the full dataset is used to construct the
library in this case. Jackknifing can also be used for simplex projection and S-maps
using the explore subcommand, but other methods are also available. For the jackknife,
users should fix E, L, and 7 prior to the jackknife process as the results only contain
the last set of estimates in the jackknife mode (i.e., common E, L, and 7). However,
this method does not evaluate convergence in CCM, which implies an increase in p as
the library size L increases.

To evaluate convergence for CCM at library sizes smaller than the maximum and
for any result from the explore subcommand, a second approach is possible using the
replicate() option because the edm program randomly forms the library that defines a
reconstructed manifold. As p is expected to increase as L increases during cross-mapping
when causality is present, here we give an example testing whether the mean prediction
accuracy with a library size of 140 gives statistically significantly better predictions
compared with a library size of 10 (i.e., a test of convergence). We randomly sample the
dataset 100 times using the rep() option and test whether the two p values stored in
tho140_3 and rho10_3 are equal. As shown below, a t-test rejects the hypothesis that
the mean value of the prediction strength when L = 10 is the same as when L = 140,
and in fact the mean p of .097 increases to .676 when increasing L to 140. This indicates
that increasing the library size of the reconstructed manifold improves prediction, which
can be understood as rejecting a null hypothesis of equivalent predictive ability at small
and large library sizes, with an alternative hypothesis of improved prediction at a larger
library size (which is consistent with what one may expect for a causal relationship
X =Y).

. foreach 1 of numlist 10 140 {

2. edm xmap x y, library("1°) rep(100)
3. mat cyx = e(xmap_2)

4. svmat cyx, names(lib 17 _yx)

5.}

(output omitted )
. ttest 1ib10_yx3 == 1ib140_yx3, unpaired unequal

Two-sample t test with unequal variances

Variable Obs Mean Std. Err.  Std. Dev. [95% Conf. Intervall
1ib10_~3 100 .1032279 .0102391 .1023911 .0829113 .1235445
1ib140-~3 100 .6751515 .0012912 .0129119 .6725895 .6777135
combined 200 .3891897 .0209145 .2957763 .3479471 .4304323

diff -.5719236 .0103202 -.5923933 -.5514538

diff = mean(lib10_yx3) - mean(1ib140_yx3) t = -55.4178
Ho: diff = 0 Satterthwaite s degrees of freedom = 102.148

Ha: diff < O Ha: diff !'=0 Ha: diff > O
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Pr(T < t) = 0.0000 Pr(IT| > |t]) = 0.0000 Pr(T > t) = 1.0000

Also relying on the replicate() and i() options, another more common and
generally recommended way to test for convergence is to form intervals around p or
MAE at the minimum L, and see if p or MAE at the maximum L is excluded to test
for improved prediction (a test for Ap and AMAE; Ye et al. 2015b,¢). In such a case,
because the test is directional, the estimated p and MAE at the maximum library size
can be evaluated against whether or not it falls above the 95% of the distribution at the
smallest (or very small) L, perhaps using replicate(1000) and then saving all results
using svmat and compare the distributions. Alternatively, one may use the ci() option
to get the confidence intervals for the mean values of the p estimates. In the example
below the ci(90) option is used to produce the confidence interval for the mean value
of p, assuming a normal distribution, as well as the percentile values of the distribution.
The first listed CI values for the mean p capture the sampling variations associated with
the replication or cross-validation estimation process, thus enabling comparisons and
hypothesis testing (such as t-test) across different edm (hyper) parameters including FE
or L using the same dataset (i.e., making inferences only about the sample itself rather
than an external population). The example below shows that even the upper bound of
the estimate with a library size of 10 is much lower than the estimate derived at the
full library size (the upper-bound of 0.11604 for the estimated mean CI and 0.27357 for
the observed percentile are well below the observed 0.69682 at the maximum library
size—an encouraging sign of convergence for the sample and population, respectively).
The percentile values offer a set of alternative metrics, describing the dispersion of the
entire distribution of the estimates which better reflect the expected variation associated
with the population.

. edm xmap y x, library(10) rep(1000) c¢i(90) direction(oneway)

Empirical Dynamic Modelling
Convergent Cross-mapping result for variables y and x

Mapping Lib size Mean rho Std. Dev.

x ~ x|M(y) 10 .11004 .11533
Est. mean 90% CI [ .10403, .11604 ]
5/95 Pc (Est.) [ -.07967, .29974 ]
5/95 Pc (Obs.) [ -.10107, .27357 ]

Note: Results from 1000 replications
Note: The embedding dimension E is 2

. edm xmap y x, direction(oneway)

Empirical Dynamic Modelling
Convergent Cross-mapping result for variables y and x
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Mapping Library size rho MAE

x ~ x|M(y) 150 .69682 .13714

Note: The embedding dimension E is 2

Similar tests are possible using replicate (1000) with simplex projection at different
values of F, and for S-maps to test nonlinearity when # = 0 versus 6 at max p (or min
MAE) if these exist when 6 > 0 (again, a test of Ap and AMAE; Hsieh and Ohman
2006; Glaser et al. 2013; Ye et al. 2015a). For these latter tests, using a common seed ()
setting will allow pairing the sets of 1000 replications for § = 0 versus 6 at max p (or
min MAE).

Finally, rather than forming intervals around specific p or MAE, a third approach
forms a null distribution for p or MAE by using permutation-based randomization.
Typically called a “surrogate data” method, this procedure shuffles the data across a
time variable (i.e., randomizes the time variable) and re-estimates the model each time
(e.g., Deyle et al. 2016a; Hsieh et al. 2008; Tsonis et al. 2015). This is a useful approach
because it keeps the observed data intact but ruins its temporal aspects that are essential
for modeling system evolution in EDM. With this method, a null distribution can
be generated for p and MAE in simplex projection, S-mapping, or CCM by simply
generating a random sequence of numbers, sorting the data by them, and then generating
a new _n variable which is tsset as a time indicator—in the panel data case using the
bysort command with a panel identifier variable and then xtset.

As an example, we can compare Figure 6 with the p—L convergence in Figure 7, the
latter of which is derived from a permutation test using the original xmap procedure
with £ = 2 but with randomized timestamps. The figure shows a noisier result with
much lower values for p, and convergence does not follow a consistent trajectory along
the increase of L until very late (close to maximum L). Additionally, the p at the full
library size still fall within range of the p when L is smaller than 50, showing no clear
sign of improvement for both directions. It should be noted that p will eventually diverge
numerically as estimations become deterministic when the full library is used, thus the
relative differences between the prediction performances in both directions near the full
library size alone cannot be used to assess convergence.

Using this same basic logic, if seasonality or other periodic effects are a concern,
permutation can be done in ways that reflect such periodic coupling to test whether
these are biasing results (see Deyle et al. 2016a,b).

Beyond these three methods, it is also possible to implement a more traditional
nonparametric bootstrap with replacement (see Clark et al. 2015; Ye et al. 2015¢). Yet,
care must be taken in the re-sampling process as the data must be in a valid time-series
or panel format to form the proper E-length vectors without creating missingness. The
edm package for Stata does not have this approach built-in and it is not planned.
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Figure 7: p-L convergence diagnosis in a permutation test.

5.6 Evaluating time-delayed causal effects

Another interest when investigating causality is to test for time-delayed casual effects
over a specific time frame. Ye et al. (2015b) proposed an extension of CCM to determine
whether a driving variable acts with some time delay on a response variable by explicitly
considering different lags for cross-mapping. In this approach, one implication is that
direct effects among variables should have the highest cross-map skill (i.e., largest p
and smallest MAE) and the most immediate effects (no or few lags). On the other
hand, indirect effects should be weaker and have longer time delays. Furthermore, and
rather curiously, in cases where bidirectional causality appears to exist because of what
is actually strong unidirectional forcing, an impossible positive lag showing a maximum
effect can indicate false convergence (see Ye et al. 2015b)—in this case, the test for
time-delayed effects is thus an assumption test.

The edm command supports such reverse- and forward-lagged analyses with minimal
input changes by relying on time-series operators (prefixes 1. and f.). To illustrate
this, we introduce a new variable z,

Zt = Zt—1 [377 (1 — Zt—l) — 0~4yt—1]

which is a function of its own past values and the lagged values from y, thus forming an
indirect * — y — z effect. We use edm to test direct causation between z, y, and z by
estimating their time-delayed CCM performance. The code is provided in an Appendix.

As shown in the cross-mapping results® in Figure 8, 2 — y and y — z seem to exhibit
higher p values and fewer delays. The link between x and z has much weaker cross-map

6. The figure only plots the mapping results in the directions that exhibit a dominating causal effect
(3 out of 6 cross-mappings).
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Figure 8: Time-delayed causal detection.

skill and longer delays in observing the peak p, suggesting an indirect time-delayed
causal effect that by design exists in our model: © — y — z.

5.7 Visualizing the strength of causation

To demonstrate the usefulness of EDM in estimating the impact of causal variables,
in this section we use a real-world dataset that reflects daily temperature and crime
levels in Chicago (from crime.static-eric.com, which we make available in a Stata format
online). Compared with the previous logistic map example where the marginal effects of
the two variables are highly unstable over time by construction, this example showcases
how edm can be applied in a real-world dataset.

We first used the steps we recommend above: explore the data series using 1) simplex
projection to find optimal F and 2) S-maps to examine for nonlinearity; and then 3)
proceed to the xmap subcommand to conduct CCM and examine for convergence to test
causality among the series. Following this, we can proceed to an additional step 4) of
running the xmap subcommand with the algorithm(smap) option to derive regression
coefficients that can be used to estimate bivariate overall causal effects.

In the exploration phase, edm suggests that temperature and crime have an optimal
FE of 7, which was determined by the largest p using the command “edm explore temp,
e(2/20) crossfold(5)”. The extra crossfold() option offers more refined control
over the training/testing data split ratio and in this case reports the results from a 5-fold
cross-validation.” Similar to the replicate () implementation, training/test data split
applies at the manifold instead of at the observation level to avoid introducing additional

7. See Rodriguez et al. (2010) for a discussion on the sensitivity of k-fold cross-validation.


http://crime.static-eric.com/
https://jinjingli.github.io/edm/
https://jinjingli.github.io/edm/
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Figure 9: p—L convergence plot for Chicago crime dataset (10 replications).

gaps in the time-series, allowing more refined control over the split ratio.

Figure 9 shows the p—L convergence plot derived from the edm xmap return matrices.
As shown, CCM suggests the likely casual direction is that an increase in temperature
leads to change in crime rate rather than the reverse (and impossible) case of crime
affecting temperature. Consistent with existing findings using more typical methods,
this analysis suggests that temperature CCM-causes crime.

To estimate the size of causal effects in addition to predictive ability in CCM, we
proceed with cross-mapping using the S-map algorithm and the savesmap() option,
which saves estimated coefficients that indicate the marginal effects of the variables. The
command used in the analysis is as follows, where the k(-1) option is used to recruit all
available neighbors in the reconstructed manifold for prediction with a default weighting
theta(1l). Specifying a positive number in the k() option will restrict the number of
neighbors, reducing computation times. However, a low value results in less stable results
given the smaller sample size in the local regressions.

. edm xmap temp crime, alg(smap) savesmap(beta) e(7) k(-1)

In addition to the standard reporting, this command generates new variables named
with the prefix beta that provide marginal regression coefficients across all points in the
prediction library for the variables listed. Recall from above that to obtain the marginal
regression coefficients in the typical predictor — outcome direction for regression will
require reversing the order of the variables, because CCM causality is evaluated in the
opposite direction. Thus, in this example, we only use variables starting with betal given
our interest is in the marginal effect of temperature in a manifold when predicting crime,
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and the command “edm xmap temp crime” will generate the prediction crime|Memyp
for the betal coefficients. Note that this differs from the CCM causal exploration
earlier where we use the manifold constructed by the crime variable to infer the casual
effect of temperature on crime, or temp|M c;ime. Again, we appreciate that this may be
unintuitive, but the key to keeping the setup and interpretation simple is remembering
that the direction of typical regression-oriented prediction is reversed for investigating
CCM causation. When in doubt, the conditional notation will be of help, such that
temp| M crime implies a CCM effect of temp — crime (reading the notation left-to-right),
but of course in a regression logic the S-map coefficients reflecting this effect are gotten
from the reverse crime|M emp mapping. Since no rep() option is specified, all beta
variables share the same suffix rep1 (first replication), and replication is not relevant
because the library size is at a maximum.

As explained earlier, the S-map process uses what can be thought of as a locally-
weighted distributed lag model with E predictors (and a constant term c), and each
of the coeflicients can be stored as variables with the savesmap() option. Recall the
naming convention in Section 3 wherein numbers after 1 indicate the length of the lag
(from 0 to E —1). Recall also that these coefficients are saved for each predicted value
and appropriately matched in a dataset to the observation t that is being predicted. In
other words, each observation in a dataset at t > F will have E + 1 regression weights
associated with it, where each reflects the E weights on the k neighbors from the library
set and the constant used for prediction. In this example, e (7) produces eight coefficients
(seven for lags, and one constant) for each predicted observation in the dataset at ¢ > 7.
Please note that the coefficients are derived from one possible manifold reconstruction,
where a series of lags are used to reconstruct the manifold. Other possible embedding
combinations may lead to different estimates for the same variable, although the results
are expected to be broadly consistent as they reflect the same underlying dynamic system.
Again we emphasize that results should be understood in this light rather than in terms
of a typical regression model.

Figure 10 plots the contemporaneous effect of temperature on crime (betal_bl_repl)
in the local S-map prediction together with the temperature. The contemporaneous
effect, as shown, is distributed between 2 and 5, and suggests an average increase of
approximately 3.3 crimes® per degree of temperature rise. This is akin to the marginal
contemporaneous effect of temperature on crime in a local regression. Each dot in the
figure represents one estimate in the local state space of an observation. Given the
nonlinearity of the model, the coefficients from different states are not necessarily the
same. In this case, we observe a gradually declining effect of temperature on crime
as the weather becomes warmer. One should keep in mind that these coefficients
describe expected changes in crime rates at different temperatures, rather than expected
crime rates themselves (which tend to be higher during warmer days). Similar to a
standard regression, the coefficient size should be interpreted in the context of the unit

8. We also carried out a variety of secondary analyses controlling for linear and seasonal trends and
our results are largely unchanged in magnitude. Our online .do file shows how to reproduce these
analyses either by controlling for trends and analysing residuals or by including trend information
in the manifold directly and computing conditional coefficients on temperature predicting crime.
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Figure 10: Scatterplot of the S-map coefficient (contemporaneous effect).

of measurement for the observed variables. If the z. prefix is added to the variable
names, the results should be interpreted as changes in the standardized score, similar to
a standardized regression coefficient.

Depending on the context of the analysis, it could be also important to emphasize
the dynamic nature of the model, as any change at t — 7 would affect the observations at
time ¢. To predict the impact of a lagged temperature shock, one may consider running
the prediction iteratively over time (a step-ahead prediction) to estimate its long-term
impact on crime rate. The prediction via this dynamic process may be different than
the reported coefficients due to the nonlinear nature of the system. The more common
practice in autoregressive or VAR models of using the sum of the average effects across
all F lags may ignore the nonlinear dynamics in the marginal effects over time.

To illustrate the use of the command, we also provide three template .do files as part of
the online supplementary materials for the article, covering three common analysis types
for time-series data, panel data (shared dynamic system using the default ‘multispatial’
approach), and panel data (distinct dynamic systems or ‘multiple EDM’ where each panel
is analyzed separately; similar to van Berkel et al. 2020). These .do files automatically
analyze data using the primary EDM tools of simplex projection, S-maps, and CCM, but
also produce various plots and automate additional post-processing including hypothesis
tests of various types. These .do files will also be updated over time to include additional
features and fix bugs.
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6 Concluding Remarks

The new edm package for Stata offers nonparametric tools for characterizing and modeling
causality in nonlinear dynamical systems. It allows users to explore the bivariate overall
causal relationships among variables with minimal assumptions on the data generation
process. The package includes the common tools for casual explorations for a typical
end-user. For advanced users, the command exports several useful Stata locals and
matrices for post-processing. Combined with the capacity of Stata’s other built-in
and user-written commands, the new edm command offers a relatively easy interface
for relatively complex EDM computations and the ability to fine-tune the critical
parameters behind EDM analyses. Thus, the procedure implemented in this package
can be applied in datasets collected in many different fields, including health science,
psychology, economics, sociology, and the natural sciences.

This is an important addition to Stata’s existing capabilities for multiple reasons,
including for checking the assumptions that underlie many existing time-series and panel
data methods. For example, most of these methods assume stability and/or stationarity
in random residuals, but tests for these conditions are typically based on assumptions of
linearity and therefore may not be sensitive to nonlinear dynamics. To evaluate this,
residuals from typical approaches can be subjected to the methods we propose here to
check for structure from nonlinear dynamical systems (Dixon et al. 2001, see also Glaser
et al. 2011). Specifically, simplex projection can be used to test for low-dimensional
determinism that may masquerade as random noise and S-maps can be used to test
for nonlinearity. Furthermore, residuals and observed predictors can be used in CCM
to test for causal effects missed in other approaches, whereas all residuals from VAR
models can be used in CCM for the same purpose. This allows for more robust tests of
assumptions regarding residual dynamical structures.

We would also like to point out that, like many user-written programs, edm is a work
in progress with new features to appear in future versions (along with bug fixes). As a
non-parametric method, the command may require considerable computing time when
running on large datasets even with the core algorithm coded in the Mata language
and run on multiple CPU cores in Stata’s MP version. Future updates will explore
further optimization possibilities and better leverage the multiple compute cores in
modern architectures, including on graphics processing units (GPUs). Additionally,
the integration of imputation techniques will also be considered and implemented in
future versions. The help file of the edm command will describe these improvements as
we proceed elaborating on this important initial work for nonlinear dynamical systems
modeling in Stata. As we proceed, our goal is to provide the kinds of tools required
to address the complex systems that social and health scientists increasingly recognize
as being ubiquitous in their fields of study (e.g., Atkinson et al. 2018; Rutter et al.
2017), while improving compute times to better tackle the ‘big data’ problems that are
increasingly found across the social, health, and natural sciences.
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