Beyond Linearity, Stability, and Equilibrium: The edm Package for Empirical Dynamic Modeling and Convergent Cross Mapping in Stata

Jinjing Li
NATSEM, University of Canberra

QMNET Seminar Series

Li, J., Zyphur, M., Sugihara, G., & Laub, P. (forthcoming). Beyond Linearity, Stability, and Equilibrium: The edm Package for Empirical Dynamic Modeling and Convergent Cross Mapping in Stata. Stata Journal

Outline

- Causal identifications
- Empirical dynamic modelling
- Implementations in Stata
- Additional features
- Limitations

Causal Identifications

- Causal identifications are fundamental underpinnings in many fields
- Experiments
 - Design, time, cost, ethical concerns
- Using observed data
 - Exploit observed variations
 - Mimic experiments (e.g. PSM, DiD, RD)
 - Incorporate additional information/assumptions (e.g. IV)

Causal Identifications

- Correlation vs Causation
- Model specification is not known a priori
 - Linearity assumption may not be suitable for dynamic complex system
- Granger causality
 - Separability and linearity assumption

Empirical Dynamic Modelling

Based on Takens's theorem

Source: Clark(2015); Ye, Clark, Deyle, & Sugihara (2018)

Convergent cross-mapping

- Cross-mapping prediction accuracy reflects the causal direction
- Mapping accuracy improves as density of the manifold increases

Ye and Sugihara (2012)

Advantages

- Doesn't need parametric specification
- Can capture complex dynamics
- Reveal causality

Simplex Projection

- Find the nearest k neighbours in the reconstructed manifold
- The prediction is a locally weighted mean
- the weight w_i can be written as $w_i = u_i / \sum_{j=1}^k u_j$
- where $u_i = \exp\left(-\theta \frac{\|x_t x_{t_i}\|}{\|x_t x_{t_1}\|}\right)$

Ye and Sugihara (2012)

S-map (Sequential locally weighted global linear maps)

- Find the nearest k neighbours in the reconstructed manifold
- Local linear prediction
- SVD solution of B = AC
- The vectors are weighted using $w_i = \exp\left(-\theta \frac{\|x_t x_{t_i}\|}{\frac{1}{k}\sum_{j=1}^k \|x_t x_{t_j}\|}\right)$

Evaluate the prediction accuracy

- Use correlation
- Use MAE
- Use other measures

Compare results from both directions

The edm package in Stata

Basic syntax

edm
$$\frac{\text{explore}}{\text{xmap}}$$
 $var1$ $var2$, $e(int)$

- The dataset needs to be declared as time-series (tsset) or panel (xtset)
- See help edm for other options

The edm package in Stata

• edm explore x

Note: Random 50/50 split for training and validation data

A logistic map example

Setup a chaotic system with two variables

$$\begin{cases} x_t = x_{t-1} * (3.79 * (1 - x_{t-1})) \\ y_t = y_{t-1} * (3.79 * (1 - y_{t-1}) - 0.20 * x_{t-1}) \end{cases}$$

First 300 observations burned

```
set obs 500
gen t = n
tsset t
gen x = 0.2 if n==1
gen y = 0.3 if n==1
local r \times 3.79
local r y 3.79
local beta_xy = 0.0
local beta yx=0.2
local tau = 1
forvalues i=2/`= N' {
    replace x=1.x *(`r_x' *(1-1.x)-
`beta xy'*l.y) in `i'
    replace y=1.y *(`r y' *(1-1.y)-
`beta yx'*l`tau'.x) in `i'
keep in 300/450
```

A logistic map example

Correlation between x and y

. reg x y

Source	SS	df	MS	Number of obs	5 = =	151 3.59
Model Residual	.214899995 8.9102959	1 149	.214899995	Prob > F R-squared Adj R-squared	=	0.0599 0.0236
Total	9.12519589	150	.060834639	Root MSE	=	.24454
x	 Coef.	Std. Err.	t (P> t [95% (Conf.	Interval]
y _cons	.1680433 .5367766	.0886453		0.06000712 0.000 .42150		.3432077

Determine the dimensionality of the system

- Dimensionality is approximated via the prediction accuracy
- Simplex projection with the explore subcommand, using the range of dimensions specified in the e() option

Determine the dimensionality of the system

. edm explore y, e(2/10) rep(50)

Empirical Dynamic Modelling
Univariate mapping with y and its lag values

		rho		M	AE
Actual E	theta	Mean	Std. Dev.	Mean	Std. Dev.
2	1	.97818	.0087775	.033184	.0054952
3	1	.96243	.015995	.042502	.0063758
4	1	.94326	.019242	.051377	.0067221
5	1	.91181	.029522	.062658	.0086431
6	1	.87719	.043446	.072902	.010937
7	1	.8273	.053334	.085823	.011906
8	1	.77604	.055847	.099908	.012017
9	1	.73687	.060581	.1096	.011713
10	1	.7062	.061469	.11721	.010954

Note: Results from 50 runs

Note: Random 50/50 split for training and validation data

$\rho - E$ plot

Nonlinearity Testing

. edm explore y, e(2) algorithm(smap) theta(0(0.01)5) k(-1)

Empirical Dynamic Modelling
Univariate mapping with y and its lag values

Actual E	theta	rho	MAE
2	0	.69754	.13328
2	.01	.70319	.13226
2	.02	.70873	.13125
2	.03	.71416	.13024
2	.04	.71948	.12924
2	.05	.72469	.12825
2	.06	.72979	.12727
2	.07	.73479	.12629
2	.08	.73969	.12532
2	.09	.74449	.12436
2	.1	.74919	.12341
•••			

Cross-mapping and causal directions

. edm xmap x y, e(2)

```
Empirical Dynamic Modelling

Convergent Cross-mapping result for variables x and y

Mapping Library size rho MAE

y ~ y|M(x) 150 .23019 .19673
x \sim x|M(y) 150 .69682 .13714
```

Note: The embedding dimension E is 2

Cross-mapping and causal directions

```
edm xmap x y, e(2) rep(10) library(5/150)
```

Replication progress (20 in total)

Empirical Dynamic Modelling

Convergent Cross-mapping result for variables x and y

Mapping	Lib size	Mean rho	Std. Dev.
y ~ y M(x)	5	023008	.10591
$y \sim y M(x)$	6	.00047947	.11217
$y \sim y M(x)$	7	.031598	.10724
$y \sim y M(x)$	8	.030306	.11195
$y \sim y M(x)$	9	.029225	.1057
$y \sim y M(x)$	10	.022898	.10946

Cross-mapping and causal directions

Convergence Testing

- Parametric fitting
 - Equations with convergence properties such as $\rho_L = \alpha e^{-\gamma L}$
- Hypothesis testing
 - Test $\rho_{100} > \rho_{50}$; $\rho_{X \to Y,L} > \rho_{Y \to X,L}$
- Comparison with a null distribution
 - Randomised timestamp

Convergence Testing

```
. edm xmap x y, library(140) rep(100)
 . mat c2 = e(xmap 2)
 . svmat c2, names(rho140 )
 . ttest lib10 yx3 == lib140 yx3, unpaired unequal
 Two-sample t test with unequal variances
                               Std. Err. Std. Dev. [95% Conf. Interval]
 Variable |
              0bs
                        Mean
              100 .1032279 .0102391
 lib10 ~3 |
                                         .1023911 .0829113
                                                                .1235445
 lib140~3 |
              100
                     .6751515
                                .0012912
                                         .0129119
                                                      .6725895
                                                                .6777135
                     .3891897
 combined |
              200
                                .0209145
                                         .2957763
                                                      .3479471
                                                                 .4304323
    diff |
                    -.5719236
                                .0103202
                                                    -.5923933
                                                               -.5514538
    diff = mean(lib10 yx3) - mean(lib140 yx3)
                                                            t = -55.4178
 Ho: diff = 0
                               Satterthwaite's degrees of freedom = 102.148
    Ha: diff < 0
                              Ha: diff != 0
                                                          Ha: diff > 0
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000
```

Comparison with a null distribution

Original Data

Randomised timestamp

Example: Chicago crime data

 Chicago daily temperature and counts of crime for more than 11 years

•
$$\rho = 0.46$$

Example Chicago crime temperature

Some additional features

- Standardisation of variables
- *k*-fold cross-validations
- Multivariate embedding
- Estimate marginal effect
- EDM with panel data
- Conditional causality
- Time-delayed causality

Standardisation of variables

• edm supports the use of time-series operators (e.g. d.x l.x, f.x l.d2.x) and an additional standardisation operator (z.)

- edm explore z.x
- edm xmap z.f.x z.d.y

k-fold cross-validations

. edm explore x, cross(5) detail dot(0)

Empirical Dynamic Modelling
Univariate mapping with x and its lag values

Actual E	theta	rho	MAE
2 2	1 1 1	.99956 .99976	.0048037
2 2 2	1 1 1	.9978 .99914 .99962	.0088557 .0065735 .0041738

Note: Number of neighbours (k) is set to E+1 Note: 5-fold cross validation results reported

Multivariate embedding

• It is possible to customize the embedding specification in edm

• edm xmap x y, extra(z l.z l2.z)

Estimate marginal effect using s-map

• edm xmap temp crime, e(7) alg(smap) k(-1) savesmap(beta)

. desc beta*

```
storage
                       display
                                  value
variable name
                                  label
                                             variable label
               type
                       format
                                             temp predicting crime or crime M(temp) S-map coefficient (rep 1)
beta1 b1 rep1
               double %10.0g
                                             11.temp predicting crime or crime M(temp) S-map coefficient (rep 1)
beta1 b2 rep1
               double %10.0g
beta1 b3 rep1
               double %10.0g
                                             12.temp predicting crime or crime M(temp) S-map coefficient (rep 1)
beta1 b4 rep1
               double %10.0g
                                              13. temp predicting crime or crime M(temp) S-map coefficient (rep 1)
                                             14.temp predicting crime or crime M(temp) S-map coefficient (rep 1)
beta1 b5 rep1
               double %10.0g
                                             15.temp predicting crime or crime M(temp) S-map coefficient (rep 1)
beta1 b6 rep1
               double %10.0g
beta1 b7 rep1
                                              16.temp predicting crime or crime M(temp) S-map coefficient (rep 1)
               double %10.0g
                                              constant in temp predicting crime S-map equation (rep 1)
beta1 b0 rep1
               double %10.0g
                                              crime predicting temp or temp M(crime) S-map coefficient (rep 1)
beta2_b1_rep1
               double %10.0g
```

EDM with panel data

- edm supports panel data (declared by xtset)
- By default it uses the pooled approach
 - Assuming all individual time-series share the same dynamic
- Pre-process data to obtain a fixed-effect like estimator (within estimator)

```
bys id: egen mean_x = mean(x)
gen x_new = x-mean_x
edm explore x
```

Conditional causality

- edm estimates reflect the overall bivariate causality
- It is sometimes useful to estimate the causal direction conditional on an additional variable partial cross-mapping (Leng et al, 2020)
- Normal cross-map $ho_{X,\widehat{X}|M_Y}$
- Partial cross-map $Pcc(X, \hat{X}|M_Y|\hat{X}|M_{\hat{Z}|M_Y})$ where $Pcc(a, b|c) = \frac{\rho_{a,b} \rho_{a,c}\rho_{b,c}}{\sqrt{(1-\rho_{a,c}^2)(1-\rho_{b,c}^2)}}$

Conditional causality

- edm xmap y x, oneway predict(x_my)
- edm xmap y z, oneway predict(z_my)
- edm xmap z_my x, oneway predict(x_mz_my)
- cor x x_my
- pcorr x x_my x_mz_my

Time-delayed causality

• The edm command supports such reverse- and forward-lagged analyses with minimal input changes by relying on time-series operators (prefixes I. and f.).

Limitations

- Bivariate overall causality
- Hyperparameters
- Estimations might be slow for datasets with large N*T and large E
 - Multi-core CPU/GPU version
 - Cloud-based version
- Missing values
 - Different solutions
- Different data types / distance measures

References

• Li, J., Zyphur, M., Sugihara, G., & Laub, P. (forthcoming). Beyond Linearity, Stability, and Equilibrium: The edm Package for Empirical Dynamic Modeling and Convergent Cross Mapping in Stata. Stata Journal

Stata package installation
 ssc install edm